Adrian Montgomery Ruf

Postdoctoral researcher
Department of Mathematics
University of Oslo

Press photo

Contact information

Postal address University of Oslo
Department of Mathematics
Postboks 1053
Blindern
0316 Oslo
Norway
Email adrianru (at) math.uio.no
Web sites University web page
Google Scholar profile
ORCID
Researchgate

Research interests

My research interests lie broadly within the field of numerical analysis and partial differential equations.
More specifically, I am interested in with applications in

Publications

Preprints

Journal publications

  1. J. Badwaik, C. Klingenberg, N. H. Risebro, and A. M. Ruf
    Multilevel Monte Carlo finite volume methods for random conservation laws with discontinuous flux
    M2AN Math. Model. Numer. Anal. (2021) 55: 1039–1065
    [arxiv][journal][code]
  2. U. S. Fjordholm and A. M. Ruf
    Second-order accurate TVD numerical methods for nonlocal nonlinear conservation laws
    SIAM J. Numer. Anal. (2021) 59(3): 1167–1194
    [arxiv][journal]
  3. A. M. Ruf
    Flux-stability for conservation laws with discontinuous flux and convergence rates of the front tracking method
    IMA J. Numer. Anal. (2021)
    [arxiv][journal][code]
  4. J. Badwaik and A. M. Ruf
    Convergence rates of monotone schemes for conservation laws with discontinuous flux
    SIAM J. Numer. Anal. (2020) 58(1): 607–629
    [arxiv][journal]
  5. N. H. Risebro and A. M. Ruf
    Numerical investigations into a model of partially incompressible two-phase flow in pipes
    SeMA (2020) 77: 143–159
    [arxiv][journal]
  6. A. M. Ruf, E. Sande, and S. Solem
    The optimal convergence rate of monotone schemes for conservation laws in the Wasserstein distance
    J. Sci. Comput. (2019) 80: 1764–1776
    [arxiv][journal][poster]
  7. J. Ridder and A. M. Ruf
    A convergent finite difference scheme for the Ostrovsky–Hunter equation with Dirichlet boundary conditions
    Bit Numer. Math. (2019) 59: 775–796
    [arxiv][journal][code]
  8. A. M. Ruf
    Convergence of a full discretization for a second-order nonlinear elastodynamic equation in isotropic and anisotropic Orlicz spaces
    Z. Angew. Math. Phys. (2017) 68(118): 1–24
    [arxiv][journal]