My research interests lie broadly within the field of numerical analysis and partial differential equations.
More specifically, I am interested in
Convergence analysis of numerical methods
Development of high-order numerical methods
Convergence rates of numerical methods
with applications in
Hyperbolic conservation laws
Nonlocal partial differential equations
Peridynamics
Uncertainty quantification
Bayesian inverse problems
Publications
Preprints
S. Mishra, D. Ochsner, A. M. Ruf, F. Weber Well-posedness of Bayesian inverse problems for hyperbolic conservation laws [arxiv]
@misc{mishra2021wellposedness,
title={Well-posedness of {B}ayesian inverse problems for hyperbolic conservation laws},
author={Siddhartha Mishra and David Ochsner and Adrian M. Ruf and Franziska Weber},
year={2021},
eprint={2107.09701},
archivePrefix={arXiv},
primaryClass={math.NA}
}
Journal publications
J. Badwaik, C. Klingenberg, N. H. Risebro, and A. M. Ruf Multilevel Monte Carlo finite volume methods for random conservation laws with discontinuous flux M2AN Math. Model. Numer. Anal. (2021) 55: 1039–1065 [arxiv][journal][code]
@article{badwaik2020multilevel,
author={Badwaik, Jayesh and Klingenberg, Christian and Risebro, Nils Henrik and Ruf, Adrian M.},
title={Multilevel {M}onte {C}arlo Finite Volume Methods for Random Conservation Laws with Discontinuous Flux},
DOI= "10.1051/m2an/2021011",
url= "https://doi.org/10.1051/m2an/2021011",
journal = {M2AN Math. Model. Numer. Anal.},
year = {2021},
volume = 55,
number = 3,
pages = "1039-1065"
}
U. S. Fjordholm and A. M. Ruf Second-order accurate TVD numerical methods for nonlocal nonlinear conservation laws SIAM J. Numer. Anal. (2021) 59(3): 1167–1194 [arxiv][journal]
@article{FjordholmRuf2021,
author = {Fjordholm, Ulrik S. and Ruf, Adrian M.},
title = {Second-Order Accurate {TVD} Numerical Methods for Nonlocal Nonlinear Conservation Laws},
journal = {SIAM J. Numer. Anal.},
volume = {59},
number = {3},
pages = {1167-1194},
year = {2021},
doi = {10.1137/20M1360979},
URL = {https://epubs.siam.org/doi/abs/10.1137/20M1360979},
eprint = {https://epubs.siam.org/doi/pdf/10.1137/20M1360979}
}
A. M. Ruf Flux-stability for conservation laws with discontinuous flux and convergence rates of the front tracking method IMA J. Numer. Anal. (2021) [arxiv][journal][code]
@article{10.1093/imanum/draa101,
author = {Ruf, Adrian M},
title = "{Flux-stability for conservation laws with discontinuous flux and convergence rates of the front tracking method}",
journal = {IMA Journal of Numerical Analysis},
volume = {42},
number = {2},
pages = {1116-1142},
year = {2021},
month = {04},
issn = {0272-4979},
doi = {10.1093/imanum/draa101},
url = {https://doi.org/10.1093/imanum/draa101},
eprint = {https://academic.oup.com/imajna/article-pdf/42/2/1116/43373723/draa101.pdf},
}
J. Badwaik and A. M. Ruf Convergence rates of monotone schemes for conservation laws with discontinuous flux SIAM J. Numer. Anal. (2020) 58(1): 607–629 [arxiv][journal]
@article{BadwaikRuf2020,
author = {Badwaik, Jayesh and Ruf, Adrian M.},
title = {Convergence Rates of Monotone Schemes for Conservation Laws with Discontinuous Flux},
journal = {SIAM J. Numer. Anal.},
volume = {58},
number = {1},
pages = {607-629},
year = {2020},
doi = {10.1137/19M1283276},
URL = {https://doi.org/10.1137/19M1283276},
eprint = {https://doi.org/10.1137/19M1283276}
}
N. H. Risebro and A. M. Ruf Numerical investigations into a model of partially incompressible two-phase flow in pipes SeMA (2020) 77: 143–159 [arxiv][journal]
@article{Risebro2020,
Author = {Risebro, Nils Henrik and Ruf, Adrian M.},
Doi = {10.1007/s40324-019-00207-9},
Id = {Risebro2020},
Isbn = {2281-7875},
Journal = {SeMA},
Number = {2},
Pages = {143--159},
Title = {Numerical investigations into a model of partially incompressible two-phase flow in pipes},
Ty = {JOUR},
Url = {https://doi.org/10.1007/s40324-019-00207-9},
Volume = {77},
Year = {2020},
Bdsk-Url-1 = {https://doi.org/10.1007/s40324-019-00207-9}
}
A. M. Ruf, E. Sande, and S. Solem The optimal convergence rate of monotone schemes for conservation laws in the Wasserstein distance J. Sci. Comput. (2019) 80: 1764–1776 [arxiv][journal][poster]
@article{Ruf2019,
Author = {Ruf, Adrian M. and Sande, Espen and Solem, Susanne},
Doi = {10.1007/s10915-019-00996-1},
Id = {Ruf2019},
Isbn = {1573-7691},
Journal = {J. Sci. Comput.},
Number = {3},
Pages = {1764--1776},
Title = {The Optimal Convergence Rate of Monotone Schemes for Conservation Laws in the {W}asserstein Distance},
Ty = {JOUR},
Url = {https://doi.org/10.1007/s10915-019-00996-1},
Volume = {80},
Year = {2019},
Bdsk-Url-1 = {https://doi.org/10.1007/s10915-019-00996-1}
}
J. Ridder and A. M. Ruf A convergent finite difference scheme for the Ostrovsky–Hunter equation with Dirichlet boundary conditions Bit Numer. Math. (2019) 59: 775–796 [arxiv][journal][code]
@article{Ridder2019,
Author = {Ridder, J. and Ruf, Adrian M.},
Doi = {10.1007/s10543-019-00746-7},
Id = {Ridder2019},
Isbn = {1572-9125},
Journal = {BIT Numer. Math.},
Number = {3},
Pages = {775--796},
Title = {A convergent finite difference scheme for the {O}strovsky--{H}unter equation with {D}irichlet boundary conditions},
Ty = {JOUR},
Url = {https://doi.org/10.1007/s10543-019-00746-7},
Volume = {59},
Year = {2019},
Bdsk-Url-1 = {https://doi.org/10.1007/s10543-019-00746-7}
}
A. M. Ruf Convergence of a full discretization for a second-order nonlinear elastodynamic equation in isotropic and anisotropic Orlicz spaces Z. Angew. Math. Phys. (2017) 68(118): 1–24 [arxiv][journal]
@article{Ruf2017,
Author = {Ruf, Adrian M.},
Doi = {10.1007/s00033-017-0863-z},
Id = {Ruf2017},
Isbn = {1420-9039},
Journal = {Z. Angew. Math. Phys.},
Number = {5},
Pages = {118},
Title = {Convergence of a full discretization for a second-order nonlinear elastodynamic equation in isotropic and anisotropic {O}rlicz spaces},
Ty = {JOUR},
Url = {https://doi.org/10.1007/s00033-017-0863-z},
Volume = {68},
Year = {2017},
Bdsk-Url-1 = {https://doi.org/10.1007/s00033-017-0863-z}
}